This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/tree_path_composite_sum"
#include "../Utility/template.hpp"
#include "../Utility/modint.hpp"
#include "../Algorithm/treedp.hpp"
vec<ll> A;
using mint = modint998244353;
struct S {
mint val; int siz;
S(){}
S(mint v, int s) : val(v), siz(s){}
};
S op(S l, S r) {
l.val += r.val;
l.siz += r.siz;
return l;
}
S e() {
return S(0, 0);
}
S addroot(S res, int v) {
res.val += A[v];
res.siz += 1;
return res;
}
struct F{
mint b, c;
F(){}
F(mint t, mint y) : b(t), c(y) {}
};
S mp(F f, S s) {
s.val = s.val * f.b + f.c * s.siz;
return s;
}
int main() {
int n;
cin >> n;
A = vec<ll>(n, 0);
rep(i, 0, n) cin >> A[i];
TDP<S, op, e, addroot, F, mp> tdp(n);
rep(i, 0, n-1) {
int u, v, b, c;
cin >> u >> v >> b >> c;
tdp.add_edge(u, v, F(b, c), F(b, c));
}
auto ans = tdp.exe();
rep(i, 0, n) cout << ans[i].val.x << '\n';
}
#line 1 "verify/treedp.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/tree_path_composite_sum"
#line 1 "Utility/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define rep(i, s, t) for (ll i = s; i < (ll)(t); i++)
#define rrep(i, s, t) for (ll i = (ll)(t) - 1; i >= (ll)(s); i--)
#define all(x) begin(x), end(x)
#define TT template <typename T>
TT using vec = vector<T>;
template <class T1, class T2> bool chmin(T1 &x, T2 y) {
return x > y ? (x = y, true) : false;
}
template <class T1, class T2> bool chmax(T1 &x, T2 y) {
return x < y ? (x = y, true) : false;
}
struct io_setup {
io_setup() {
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
cout << fixed << setprecision(15);
}
} io_setup;
/*
@brief verify用テンプレート
*/
#line 1 "Utility/modint.hpp"
// 動的mod : template<int mod> を消して、上の方で変数modを宣言
template <uint32_t mod> struct modint {
using mm = modint;
uint32_t x;
modint() : x(0) {}
TT modint(T a = 0) : x((ll(a) % mod + mod)) {
if (x >= mod) x -= mod;
}
friend mm operator+(mm a, mm b) {
a.x += b.x;
if (a.x >= mod) a.x -= mod;
return a;
}
friend mm operator-(mm a, mm b) {
a.x -= b.x;
if (a.x >= mod) a.x += mod;
return a;
}
mm operator-() const { return mod - x; }
//+と-だけで十分な場合、以下は省略して良いです。
friend mm operator*(mm a, mm b) { return (uint64_t)(a.x) * b.x; }
friend mm operator/(mm a, mm b) { return a * b.inv(); }
friend mm &operator+=(mm &a, mm b) { return a = a + b; }
friend mm &operator-=(mm &a, mm b) { return a = a - b; }
friend mm &operator*=(mm &a, mm b) { return a = a * b; }
friend mm &operator/=(mm &a, mm b) { return a = a * b.inv(); }
mm inv() const {
assert(x != 0);
return pow(mod - 2);
}
mm pow(ll y) const {
mm res = 1;
mm v = *this;
while (y) {
if (y & 1) res *= v;
v *= v;
y /= 2;
}
return res;
}
friend istream &operator>>(istream &is, mm &a) {
ll t;
cin >> t;
a = mm(t);
return is;
}
friend ostream &operator<<(ostream &os, mm a) { return os << a.x; }
bool operator==(mm a) { return x == a.x; }
bool operator!=(mm a) { return x != a.x; }
bool operator<(const mm &a) const { return x < a.x; }
};
using modint998244353 = modint<998244353>;
using modint1000000007 = modint<1'000'000'007>;
/*
@brief modint
*/
#line 1 "Algorithm/treedp.hpp"
template <class S,
S (*op)(S, S),
S (*e)(),
S (*addroot)(S, int),
class F,
S (*mp)(F, S)>
struct TDP {
using pif = pair<int, F>;
using vs = vec<S>;
using vvs = vec<vs>;
int n;
vec<vec<pif>> g;
vvs dp;
// dp[v][i] := (v → g[v][i])の辺について、
// g[v][i]を根とする部分木の結果
vs ans;
TDP(int n) : n(n) {
g.resize(n);
dp = vvs(n);
ans = vs(n, e());
}
private:
S dfs(int v, int p) {
S res = e();
int d = g[v].size();
dp[v].resize(d);
rep(i, 0, d) {
int to = g[v][i].first;
if (to == p) continue;
dp[v][i] = dfs(to, v);
res = op(res, mp(g[v][i].second, dp[v][i]));
// 部分木の結果を集約。
// 本実装では辺を加味 ->
// 部分木集約の順を徹底している(辻褄が合うならいつでも良い)
}
// 辺・頂点をaddした影響を反映したものを返す。
return addroot(res, v);
}
void bfs(int v, S par, int p) {
int d = g[v].size();
rep(i, 0, d) if (g[v][i].first == p) dp[v][i] = par;
// 親の結果を渡しておく。
vs L(d + 1, e());
vs R(d + 1, e());
rep(i, 0, d) L[i + 1] = op(L[i], mp(g[v][i].second, dp[v][i]));
rrep(i, 0, d) R[i] = op(mp(g[v][i].second, dp[v][i]), R[i + 1]);
// 本実装では辺を加味 ->
// 部分木集約の順を徹底している(辻褄が合うならいつでも良い)
ans[v] = addroot(L[d], v);
// 辺・頂点をaddした影響を反映したものを返す。ansに格納する時だけ何か弄りたいならここを弄る。
rep(i, 0, d) {
int to = g[v][i].first;
if (to == p) continue;
S nx = op(L[i], R[i + 1]);
// 本実装では辺を加味 ->
// 部分木集約の順を徹底している(辻褄が合うならいつでも良い)
bfs(to, addroot(nx, v), v);
// to -> vの向きに辺・頂点をaddした影響を反映したものを返す。
}
}
public:
// s -> t に重みfの辺、 t -> sに重みhの辺
void add_edge(int s, int t, F f, F h) {
g[s].emplace_back(t, f);
g[t].emplace_back(s, h);
}
vec<S> exe() {
dfs(0, -1);
bfs(0, e(), -1);
return ans;
}
};
/*
@brief 全方位木DP
@docs doc/treedp.md
*/
#line 5 "verify/treedp.test.cpp"
vec<ll> A;
using mint = modint998244353;
struct S {
mint val; int siz;
S(){}
S(mint v, int s) : val(v), siz(s){}
};
S op(S l, S r) {
l.val += r.val;
l.siz += r.siz;
return l;
}
S e() {
return S(0, 0);
}
S addroot(S res, int v) {
res.val += A[v];
res.siz += 1;
return res;
}
struct F{
mint b, c;
F(){}
F(mint t, mint y) : b(t), c(y) {}
};
S mp(F f, S s) {
s.val = s.val * f.b + f.c * s.siz;
return s;
}
int main() {
int n;
cin >> n;
A = vec<ll>(n, 0);
rep(i, 0, n) cin >> A[i];
TDP<S, op, e, addroot, F, mp> tdp(n);
rep(i, 0, n-1) {
int u, v, b, c;
cin >> u >> v >> b >> c;
tdp.add_edge(u, v, F(b, c), F(b, c));
}
auto ans = tdp.exe();
rep(i, 0, n) cout << ans[i].val.x << '\n';
}