This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_add_path_sum"
#include "../Utility/template.hpp"
#include "../Algorithm/hld.hpp"
#include "../Datastructure/segtree.hpp"
using S = ll;
S op(S l, S r) {
return l + r;
}
S e() {
return 0LL;
}
int main() {
int N, Q;
cin >> N >> Q;
vec<ll> A(N);
rep(i,0,N) cin >> A[i];
vec<vec<int>> G(N);
rep(i, 0, N-1) {
int u, v;
cin >> u >> v;
G[u].push_back(v);
G[v].push_back(u);
}
HLD hld(G, 0);
vec<ll> B(N);
rep(i,0,N) B[hld.in[i]] = A[i];
segtree<S, op, e> seg(B);
while(Q--) {
int t;
cin >> t;
if(t==0) {
int p, x;
cin >> p >> x;
p = hld.in[p];
seg.set(p, seg.get(p) + x);
}
else {
int u, v;
cin >> u >> v;
auto ps = hld.path(u, v, false);
ll res = 0;
for(auto [l, r] : ps) {
if(l >= r) swap(l, r);
res += seg.prod(l, r);
}
cout << res << '\n';
}
}
}
#line 1 "verify/hld.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_add_path_sum"
#line 1 "Utility/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define rep(i, s, t) for (ll i = s; i < (ll)(t); i++)
#define rrep(i, s, t) for (ll i = (ll)(t) - 1; i >= (ll)(s); i--)
#define all(x) begin(x), end(x)
#define TT template <typename T>
TT using vec = vector<T>;
template <class T1, class T2> bool chmin(T1 &x, T2 y) {
return x > y ? (x = y, true) : false;
}
template <class T1, class T2> bool chmax(T1 &x, T2 y) {
return x < y ? (x = y, true) : false;
}
struct io_setup {
io_setup() {
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
cout << fixed << setprecision(15);
}
} io_setup;
/*
@brief verify用テンプレート
*/
#line 1 "Algorithm/hld.hpp"
struct HLD {
using vi = vec<int>;
using pi = pair<int, int>;
using pll = pair<long long, long long>;
vi in, out, par, root, rev, dep, pre_vs;
vec<ll> dep_w;
// 親/成分のtop/inの中身→頂点番号
int n, r; // 頂点数、根
static vec<vec<int>> extract_graph(const vec<vec<pll>> &G) {
vec<vec<int>> g(G.size());
for (int i = 0; i < int(G.size()); i++) {
for (auto [w, to] : G[i])
if (i < to) {
g[i].push_back(to);
g[to].push_back(i);
}
}
return g;
}
HLD(const vec<vec<pll>> &g, int a) : HLD(extract_graph(g), a) {
auto dfs = [&](auto f, int v) -> void {
for (auto [w, to] : g[v])
if (to != par[v]) {
dep_w[to] = dep_w[v] + w;
f(f, to);
}
};
dfs(dfs, r);
}
HLD(vec<vi> g, int a) : n(g.size()), r(a) {
vi siz(n, 0);
in = out = root = rev = vi(n);
par = vi(n, -1);
dep = vi(n, 0);
dep_w = vec<ll>(n, 0);
root[r] = r;
auto dfs_siz = [&](auto f, int v) -> void {
siz[v]++;
for (int &to : g[v])
if (to != par[v]) {
dep[to] = dep[v] + 1;
par[to] = v;
f(f, to);
siz[v] += siz[to];
if (siz[to] > siz[g[v][0]] || g[v][0] == par[v])
swap(to, g[v][0]);
}
return;
};
dfs_siz(dfs_siz, r);
int t = 0;
auto dfs_hld = [&](auto f, int v) -> void {
rev[t] = v;
in[v] = t++;
for (int to : g[v])
if (to != par[v]) {
root[to] = (to == g[v][0] ? root[v] : to);
f(f, to);
}
out[v] = t;
};
dfs_hld(dfs_hld, r);
for (int i = 0; i < n; i++) dep_w[i] = dep[i];
}
// 以下、欲しいもののみ書く
int operator()(int v) const { return in[v]; }
int operator()(int u, int v) const {
assert(par[u] == v || par[v] == u);
if(par[u] == v) return in[u];
else return in[v];
}
int lca(int a, int b) {
while (1) {
if (in[a] > in[b]) swap(a, b);
if (root[a] == root[b]) return a;
b = par[root[b]];
}
}
ll dist(int a, int b) {
int lc = lca(a, b);
return dep_w[a] + dep_w[b] - 2 * dep_w[lc];
}
vec<pi> path(int s, int t, bool edge) {
vec<pi> ls, rs;
while (root[s] != root[t]) {
if (dep[root[s]] > dep[root[t]]) {
ls.emplace_back(in[s] + 1, in[root[s]]); // 上り
s = par[root[s]];
} else {
rs.emplace_back(in[root[t]], in[t] + 1); // 下り
t = par[root[t]];
}
}
if (dep[s] > dep[t])
ls.emplace_back(in[s] + 1, in[t] + edge); // 上り
else
rs.emplace_back(in[s] + edge, in[t] + 1); // 下り
reverse(all(rs));
for (auto &p : rs) ls.push_back(p);
return ls;
}
pi subtree(int u, bool edge) { return pi(in[u] + edge, out[u]); }
int kth_ancestor(int v, int k) {
if (k > dep[v]) return -1;
while (v >= 0) {
if (k <= dep[v] - dep[root[v]]) {
return rev[in[v] - k];
} else {
k -= dep[v] - dep[root[v]] + 1;
v = par[root[v]];
}
}
}
int jump(int s, int t, int k) {
int m = lca(s, t);
int le = dep[s] - dep[m];
int ri = dep[t] - dep[m];
if (0 <= k && k <= le + ri) {
if (k < le)
return kth_ancestor(s, k);
else
return kth_ancestor(t, le + ri - k);
}
return -1;
}
int aux_tree(vi vs, vec<vi> &g) {
if (vs.empty()) return -1;
auto cmp = [&](int i, int j) { return in[i] < in[j]; };
sort(all(vs), cmp);
int m = vs.size();
rep(i, 0, m - 1) vs.push_back(lca(vs[i], vs[i + 1]));
sort(all(vs), cmp);
vs.erase(unique(all(vs)), vs.end());
vi st;
for (auto v : vs) {
while (st.size()) {
int p = st.back();
if (in[p] < in[v] && in[v] < out[p]) break;
st.pop_back();
}
if (st.size()) {
g[st.back()].push_back(v);
g[v].push_back(st.back());
}
st.push_back(v);
}
swap(vs, pre_vs);
return pre_vs[0];
}
void clean(vec<vi> &g) {
for (auto v : pre_vs) g[v] = vi();
pre_vs = vi();
return;
}
};
/*
@brief HLD
@docs doc/hld.md
*/
#line 1 "Datastructure/segtree.hpp"
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
int n;
int sz;
vector<S> d;
segtree(int n) : segtree(vector<S>(n, e())) {}
segtree(const vector<S> &v) : n((int)v.size()), sz(1) {
while(sz < n) sz <<= 1;
d.resize(2*sz, e());
rep(i, 0, n) {
d[sz+i] = v[i];
}
rrep(i, 1, sz) d[i] = op(d[i<<1], d[i<<1|1]);
}
void set(int p, S x) {
assert(0 <= p && p < n);
p += sz;
d[p] = x;
while(p > 1) {
p >>= 1;
d[p] = op(d[p<<1], d[p<<1|1]);
}
}
S get(int p) const {
assert(0 <= p && p < n);
return d[p + sz];
}
S prod(int l, int r) const {
assert(0 <= l && l <= r && r <= n);
S sml = e(), smr = e();
l += sz;
r += sz;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() const { return d[1]; }
template <class F> int max_right(int l, F f) const {
assert(0 <= l && l <= n);
assert(f(e()));
if (l == n) return n;
l += sz;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < sz) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - sz;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return n;
}
template <class F> int min_left(int r, F f) const {
assert(0 <= r && r <= n);
assert(f(e()));
if (r == 0) return 0;
r += sz;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < sz) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - sz;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
};
/*
@brief segtree
@docs doc/segtree.md
*/
#line 5 "verify/hld.test.cpp"
using S = ll;
S op(S l, S r) {
return l + r;
}
S e() {
return 0LL;
}
int main() {
int N, Q;
cin >> N >> Q;
vec<ll> A(N);
rep(i,0,N) cin >> A[i];
vec<vec<int>> G(N);
rep(i, 0, N-1) {
int u, v;
cin >> u >> v;
G[u].push_back(v);
G[v].push_back(u);
}
HLD hld(G, 0);
vec<ll> B(N);
rep(i,0,N) B[hld.in[i]] = A[i];
segtree<S, op, e> seg(B);
while(Q--) {
int t;
cin >> t;
if(t==0) {
int p, x;
cin >> p >> x;
p = hld.in[p];
seg.set(p, seg.get(p) + x);
}
else {
int u, v;
cin >> u >> v;
auto ps = hld.path(u, v, false);
ll res = 0;
for(auto [l, r] : ps) {
if(l >= r) swap(l, r);
res += seg.prod(l, r);
}
cout << res << '\n';
}
}
}