This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/point_set_range_composite_large_array"
#include "../Utility/template.hpp"
#include "../Utility/modint.hpp"
#include "../Datastructure/compress.hpp"
#include "../Datastructure/segtree.hpp"
using mint = modint998244353;
struct S{
mint a, b;
S(){}
S(mint d, mint t) : a(d), b(t){}
};
S op(S l, S r) {
S res;
res.a = l.a * r.a;
res.b = r.a * l.b + r.b;
return res;
}
S e() {
return S(1, 0);
}
int main() {
ll n, q;
cin >> n >> q;
compress<int> cm;
using P = array<ll, 4>;
vector<P> qs;
rep(qi, 0, q) {
int a, b, c, d;
cin >> a >> b >> c >> d;
if (a == 0) {
b--;
} else {
b--, c--;
}
qs.push_back({a, b, c, d});
cm.add(b);
}
cm.build();
segtree<S, op, e> seg(cm.size());
rep(qi, 0, q) {
auto [t, p, c, d] = qs[qi];
if (t == 0) {
p = cm.get(p);
seg.set(p, {c, d});
} else {
p = cm(p);
c = cm(c);
auto [a, b] = seg.prod(p, c);
cout << a * d + b << '\n';
}
}
}
#line 1 "verify/Datastructure_compress.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/point_set_range_composite_large_array"
#line 1 "Utility/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define rep(i, s, t) for (ll i = s; i < (ll)(t); i++)
#define rrep(i, s, t) for (ll i = (ll)(t) - 1; i >= (ll)(s); i--)
#define all(x) begin(x), end(x)
#define TT template <typename T>
TT using vec = vector<T>;
template <class T1, class T2> bool chmin(T1 &x, T2 y) {
return x > y ? (x = y, true) : false;
}
template <class T1, class T2> bool chmax(T1 &x, T2 y) {
return x < y ? (x = y, true) : false;
}
struct io_setup {
io_setup() {
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
cout << fixed << setprecision(15);
}
} io_setup;
/*
@brief verify用テンプレート
*/
#line 1 "Utility/modint.hpp"
// 動的mod : template<int mod> を消して、上の方で変数modを宣言
template <uint32_t mod> struct modint {
using mm = modint;
uint32_t x;
modint() : x(0) {}
TT modint(T a = 0) : x((ll(a) % mod + mod)) {
if (x >= mod) x -= mod;
}
friend mm operator+(mm a, mm b) {
a.x += b.x;
if (a.x >= mod) a.x -= mod;
return a;
}
friend mm operator-(mm a, mm b) {
a.x -= b.x;
if (a.x >= mod) a.x += mod;
return a;
}
mm operator-() const { return mod - x; }
//+と-だけで十分な場合、以下は省略して良いです。
friend mm operator*(mm a, mm b) { return (uint64_t)(a.x) * b.x; }
friend mm operator/(mm a, mm b) { return a * b.inv(); }
friend mm &operator+=(mm &a, mm b) { return a = a + b; }
friend mm &operator-=(mm &a, mm b) { return a = a - b; }
friend mm &operator*=(mm &a, mm b) { return a = a * b; }
friend mm &operator/=(mm &a, mm b) { return a = a * b.inv(); }
mm inv() const {
assert(x != 0);
return pow(mod - 2);
}
mm pow(ll y) const {
mm res = 1;
mm v = *this;
while (y) {
if (y & 1) res *= v;
v *= v;
y /= 2;
}
return res;
}
friend istream &operator>>(istream &is, mm &a) {
ll t;
cin >> t;
a = mm(t);
return is;
}
friend ostream &operator<<(ostream &os, mm a) { return os << a.x; }
bool operator==(mm a) { return x == a.x; }
bool operator!=(mm a) { return x != a.x; }
bool operator<(const mm &a) const { return x < a.x; }
};
using modint998244353 = modint<998244353>;
using modint1000000007 = modint<1'000'000'007>;
/*
@brief modint
*/
#line 1 "Datastructure/compress.hpp"
template <typename T> struct compress {
vector<T> vs;
bool built = false;
compress(vector<T> const &vs = {}) : vs(vs) {
}
void add(T const &v) {
assert(built == false);
vs.push_back(v);
}
void build() {
assert(built == false);
built = true;
sort(vs.begin(), vs.end());
vs.erase(unique(vs.begin(), vs.end()), vs.end());
}
ll operator()(T const &v) const {
assert(built);
return lower_bound(vs.begin(), vs.end(), v) - vs.begin();
}
ll get(T const &v) const {
assert(built);
ll ret = (*this)(v);
assert(0 <= ret && ret < ll(vs.size()));
assert(vs[ret] == v);
return ret;
}
ll size() const {
assert(built);
return vs.size();
}
};
#line 1 "Datastructure/segtree.hpp"
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
int n;
int sz;
vector<S> d;
segtree(int n) : segtree(vector<S>(n, e())) {}
segtree(const vector<S> &v) : n((int)v.size()), sz(1) {
while(sz < n) sz <<= 1;
d.resize(2*sz, e());
rep(i, 0, n) {
d[sz+i] = v[i];
}
rrep(i, 1, sz) d[i] = op(d[i<<1], d[i<<1|1]);
}
void set(int p, S x) {
assert(0 <= p && p < n);
p += sz;
d[p] = x;
while(p > 1) {
p >>= 1;
d[p] = op(d[p<<1], d[p<<1|1]);
}
}
S get(int p) const {
assert(0 <= p && p < n);
return d[p + sz];
}
S prod(int l, int r) const {
assert(0 <= l && l <= r && r <= n);
S sml = e(), smr = e();
l += sz;
r += sz;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() const { return d[1]; }
template <class F> int max_right(int l, F f) const {
assert(0 <= l && l <= n);
assert(f(e()));
if (l == n) return n;
l += sz;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < sz) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - sz;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return n;
}
template <class F> int min_left(int r, F f) const {
assert(0 <= r && r <= n);
assert(f(e()));
if (r == 0) return 0;
r += sz;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < sz) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - sz;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
};
/*
@brief segtree
@docs doc/segtree.md
*/
#line 6 "verify/Datastructure_compress.test.cpp"
using mint = modint998244353;
struct S{
mint a, b;
S(){}
S(mint d, mint t) : a(d), b(t){}
};
S op(S l, S r) {
S res;
res.a = l.a * r.a;
res.b = r.a * l.b + r.b;
return res;
}
S e() {
return S(1, 0);
}
int main() {
ll n, q;
cin >> n >> q;
compress<int> cm;
using P = array<ll, 4>;
vector<P> qs;
rep(qi, 0, q) {
int a, b, c, d;
cin >> a >> b >> c >> d;
if (a == 0) {
b--;
} else {
b--, c--;
}
qs.push_back({a, b, c, d});
cm.add(b);
}
cm.build();
segtree<S, op, e> seg(cm.size());
rep(qi, 0, q) {
auto [t, p, c, d] = qs[qi];
if (t == 0) {
p = cm.get(p);
seg.set(p, {c, d});
} else {
p = cm(p);
c = cm(c);
auto [a, b] = seg.prod(p, c);
cout << a * d + b << '\n';
}
}
}