This documentation is automatically generated by online-judge-tools/verification-helper
// https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/all
// 4_A, 4_B, 4_C
#include <bits/stdc++.h>
using namespace std;
using Point = complex<double>;
using Polygon = vector<Point>;
struct Line {
Point a, b;
Line(Point a, Point b) : a(a), b(b) {}
};
struct Segment : Line {
Segment(Point a, Point b) : Line(a, b) {}
};
const double EPS = 1e-12;
// 内積
double dot(const Point &a, const Point &b) {
return (a.real() * b.real() + a.imag() * b.imag());
}
// 外積
double cross(const Point &a, const Point &b) {
return (a.real() * b.imag() - a.imag() * b.real());
}
// 多角形の面積
double area(const Polygon &poly) {
double ans = 0;
int N = poly.size();
for (int i = 0; i < N; i++) {
ans += cross(poly[i], poly[(i + 1) % N]);
}
ans *= 0.5;
return ans;
}
// p0 から p1 へ結んだベクトルから見た p2 の位置
int counter_clockwise(const Point &p2, Point p0, Point p1) {
// 反時計回り
if (cross(p1 - p0, p2 - p0) > EPS) {
return 1;
}
// 時計回り
if (cross(p1 - p0, p2 - p0) < -EPS) {
return -1;
}
// p2, p0, p1 の順で同一直線上
if (dot(p1 - p0, p2 - p0) < -EPS) {
return 2;
}
// p0, p1, p2 の順で同一直線上
if (dot(p1 - p0, p2 - p0) > norm(p1 - p0) + EPS) {
return -2;
}
// p2 は p0 と p1 を結ぶ線分上
return 0;
}
// 直線と線分の交差判定
bool is_intersection(const Line &l1, const Segment &s2) {
return (counter_clockwise(s2.a, l1.a, l1.b) * counter_clockwise(s2.b, l1.a, l1.b) <= 0);
}
// 直線と線分の交点の座標
Point cross_point(const Line &s1, const Segment &s2) {
double d1 = cross(s1.a - s2.a, s1.b - s2.a);
double d2 = cross(s1.a - s1.b, s2.b - s2.a);
if (abs(d1) < EPS && abs(d2) < EPS) {
return s2.a;
}
return s2.a + (s2.b - s2.a) * (d1 / d2);
}
// 凸包
Polygon convex_hull(vector<Point> &ps) {
int N = ps.size();
auto compare = [](const Point &p1, const Point &p2) {
if (p1.real() != p2.real()) return p1.real() < p2.real();
return p1.imag() < p2.imag();
};
sort(ps.begin(), ps.end(), compare);
int k = 0;
Polygon qs(2 * N);
// 下側凸包
for (int i = 0; i < N; i++) {
while (k > 1 && cross(qs[k - 1] - qs[k - 2], ps[i] - qs[k - 1]) < EPS) k--;
qs[k++] = ps[i];
}
// 上側凸包
for (int i = N - 2, t = k; i >= 0; i--) {
while (k > t && cross(qs[k - 1] - qs[k - 2], ps[i] - qs[k - 1]) < EPS) k--;
qs[k++] = ps[i];
}
qs.resize(k - 1);
return qs;
}
// 最も遠い2点の距離を求める
double farest_pair(vector<Point> &ps) {
Polygon poly = convex_hull(ps);
double ans = 0;
for (int i = 0; i < (int)poly.size(); i++) {
for (int j = 0; j < i; j++) {
ans = max(ans, abs(poly[i] - poly[j]));
}
}
return ans;
}
// 直線 l で凸多角形を切断する
Polygon convex_cut(const Polygon &poly, const Line &l) {
int N = poly.size();
vector<Point> ps;
for (int i = 0; i < N; i++) {
if (cross(l.b - l.a, poly[i] - l.a) > -EPS) {
ps.push_back(poly[i]);
}
if (is_intersection(l, Segment(poly[i], poly[(i + 1) % N]))) {
ps.push_back(cross_point(l, Segment(poly[i], poly[(i + 1) % N])));
}
}
if (ps.size() <= 0) return {};
Polygon ch = convex_hull(ps);
return ch;
}
int main() {
cout << fixed << setprecision(15);
int N;
cin >> N;
Polygon poly(N);
for (int i = 0; i < N; i++) {
double x, y;
cin >> x >> y;
poly[i] = Point(x, y);
}
int Q;
cin >> Q;
while (Q--) {
int x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
Point p1(x1, y1), p2(x2, y2);
Line l(p1, p2);
cout << area(convex_cut(poly, l)) << "\n";
}
}
#line 1 "icpc_Others/geometory/convex_polygon.cpp"
// https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/all
// 4_A, 4_B, 4_C
#include <bits/stdc++.h>
using namespace std;
using Point = complex<double>;
using Polygon = vector<Point>;
struct Line {
Point a, b;
Line(Point a, Point b) : a(a), b(b) {}
};
struct Segment : Line {
Segment(Point a, Point b) : Line(a, b) {}
};
const double EPS = 1e-12;
// 内積
double dot(const Point &a, const Point &b) {
return (a.real() * b.real() + a.imag() * b.imag());
}
// 外積
double cross(const Point &a, const Point &b) {
return (a.real() * b.imag() - a.imag() * b.real());
}
// 多角形の面積
double area(const Polygon &poly) {
double ans = 0;
int N = poly.size();
for (int i = 0; i < N; i++) {
ans += cross(poly[i], poly[(i + 1) % N]);
}
ans *= 0.5;
return ans;
}
// p0 から p1 へ結んだベクトルから見た p2 の位置
int counter_clockwise(const Point &p2, Point p0, Point p1) {
// 反時計回り
if (cross(p1 - p0, p2 - p0) > EPS) {
return 1;
}
// 時計回り
if (cross(p1 - p0, p2 - p0) < -EPS) {
return -1;
}
// p2, p0, p1 の順で同一直線上
if (dot(p1 - p0, p2 - p0) < -EPS) {
return 2;
}
// p0, p1, p2 の順で同一直線上
if (dot(p1 - p0, p2 - p0) > norm(p1 - p0) + EPS) {
return -2;
}
// p2 は p0 と p1 を結ぶ線分上
return 0;
}
// 直線と線分の交差判定
bool is_intersection(const Line &l1, const Segment &s2) {
return (counter_clockwise(s2.a, l1.a, l1.b) * counter_clockwise(s2.b, l1.a, l1.b) <= 0);
}
// 直線と線分の交点の座標
Point cross_point(const Line &s1, const Segment &s2) {
double d1 = cross(s1.a - s2.a, s1.b - s2.a);
double d2 = cross(s1.a - s1.b, s2.b - s2.a);
if (abs(d1) < EPS && abs(d2) < EPS) {
return s2.a;
}
return s2.a + (s2.b - s2.a) * (d1 / d2);
}
// 凸包
Polygon convex_hull(vector<Point> &ps) {
int N = ps.size();
auto compare = [](const Point &p1, const Point &p2) {
if (p1.real() != p2.real()) return p1.real() < p2.real();
return p1.imag() < p2.imag();
};
sort(ps.begin(), ps.end(), compare);
int k = 0;
Polygon qs(2 * N);
// 下側凸包
for (int i = 0; i < N; i++) {
while (k > 1 && cross(qs[k - 1] - qs[k - 2], ps[i] - qs[k - 1]) < EPS) k--;
qs[k++] = ps[i];
}
// 上側凸包
for (int i = N - 2, t = k; i >= 0; i--) {
while (k > t && cross(qs[k - 1] - qs[k - 2], ps[i] - qs[k - 1]) < EPS) k--;
qs[k++] = ps[i];
}
qs.resize(k - 1);
return qs;
}
// 最も遠い2点の距離を求める
double farest_pair(vector<Point> &ps) {
Polygon poly = convex_hull(ps);
double ans = 0;
for (int i = 0; i < (int)poly.size(); i++) {
for (int j = 0; j < i; j++) {
ans = max(ans, abs(poly[i] - poly[j]));
}
}
return ans;
}
// 直線 l で凸多角形を切断する
Polygon convex_cut(const Polygon &poly, const Line &l) {
int N = poly.size();
vector<Point> ps;
for (int i = 0; i < N; i++) {
if (cross(l.b - l.a, poly[i] - l.a) > -EPS) {
ps.push_back(poly[i]);
}
if (is_intersection(l, Segment(poly[i], poly[(i + 1) % N]))) {
ps.push_back(cross_point(l, Segment(poly[i], poly[(i + 1) % N])));
}
}
if (ps.size() <= 0) return {};
Polygon ch = convex_hull(ps);
return ch;
}
int main() {
cout << fixed << setprecision(15);
int N;
cin >> N;
Polygon poly(N);
for (int i = 0; i < N; i++) {
double x, y;
cin >> x >> y;
poly[i] = Point(x, y);
}
int Q;
cin >> Q;
while (Q--) {
int x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
Point p1(x1, y1), p2(x2, y2);
Line l(p1, p2);
cout << area(convex_cut(poly, l)) << "\n";
}
}