This documentation is automatically generated by online-judge-tools/verification-helper
#include "Math/sieve.hpp"
struct notlinear_sieve {
int n;
vector<int> sm;
notlinear_sieve(int max_n) : n(max_n), sm(max_n + 1) {
assert(1 <= n);
iota(sm.begin(), sm.end(), 0);
if (n >= 2) sm[2] = 2;
for (int j = 4; j <= n; j += 2) sm[j] = 2;
for (int i = 3; i * i <= n; i += 2) {
if (sm[i] != i) continue;
for (int j = i * 2; j <= n; j += i) {
if (sm[j] == j) sm[j] = i;
}
}
}
bool is_prime(int v) const noexcept {
assert(v <= n);
if (v <= 1) return false;
return sm[v] == v;
}
vector<int> primes(int max_n) const noexcept {
assert(1 <= max_n && max_n <= n);
vector<int> ret;
for (int i = 2; i <= max_n; i++)
if (is_prime(i)) ret.push_back(i);
return ret;
}
// sorted
vector<pair<int, int>> factorize(int v) const noexcept {
assert(1 <= v && v <= n);
vector<pair<int, int>> ret;
while (sm[v] != v) {
int tmp = v;
int c = 0;
while (tmp % sm[v] == 0) c++, tmp /= sm[v];
ret.emplace_back(sm[v], c);
v = tmp;
}
if (v != 1) ret.emplace_back(v, 1);
return ret;
}
int divcnt(int v) const noexcept {
assert(1 <= v && v <= n);
auto ps = factorize(v);
int ret = 1;
for (auto [p, c] : ps) ret *= (c + 1);
return ret;
}
// not sorted
vector<int> divs(int v) const noexcept {
assert(1 <= v && v <= n);
auto ps = factorize(v);
int sz = 1;
for (auto [p, c] : ps) sz *= (c + 1);
vector<int> ret(sz);
ret[0] = 1;
int r = 1;
for (auto [p, c] : ps) {
int nr = r;
for (int j = 0; j < c; j++) {
for (int k = 0; k < r; k++) {
ret[nr] = p * ret[nr - r];
nr++;
}
}
r = nr;
}
return ret;
}
// 偶数...+1 奇数...-1 p^2...0
template <typename T> vector<T> mobius(int N) const {
assert(N <= n);
vector<T> ret(N + 1, 1);
for (int p = 2; p <= N; p++)
if (is_prime(p)) {
for (int q = p; q <= N; q += p) {
if ((q / p) % p == 0)
ret[q] = 0;
else
ret[q] = -ret[q];
}
}
return ret;
}
// 以下4つは素因数ごとの累積和と思うと良い。計算量はO(nloglogn)
// zeta_transform... 結合則 + 交換則 ならなんでも乗る
// mobius_transform ... 結合 + 交換 + 逆元の存在 ならなんでも乗る
// f -> F 約数の添字をadd
template <typename T> vector<T> divisor_zeta_transform(vector<T> A) const {
int N = int(A.size()) - 1;
assert(N <= n);
for (int p = 2; p <= N; p++) {
if (is_prime(p)) {
for (int k = 1; k * p <= N; k++) {
A[k * p] += A[k];
}
}
}
return A;
}
// F -> f
template <typename T>
vector<T> divisor_mobius_transform(vector<T> A) const {
int N = int(A.size()) - 1;
assert(N <= n);
for (int p = 2; p <= N; p++) {
if (is_prime(p)) {
for (int k = N / p; k >= 1; k--) {
A[k * p] -= A[k];
}
}
}
return A;
}
// f -> F 倍数の添字をadd
template <typename T> vector<T> multiple_zeta_transform(vector<T> A) const {
int N = int(A.size()) - 1;
assert(N <= n);
for (int p = 2; p <= N; p++) {
if (is_prime(p)) {
for (int k = N / p; k >= 1; k--) {
A[k] += A[k * p];
}
}
}
return A;
}
// F -> f
template <typename T>
vector<T> multiple_mobius_transform(vector<T> A) const {
int N = int(A.size()) - 1;
assert(N <= n);
for (int p = 2; p <= N; p++) {
if (is_prime(p)) {
for (int k = 1; k <= N / p; k++) {
A[k] -= A[k * p];
}
}
}
return A;
}
};
#line 1 "Math/sieve.hpp"
struct notlinear_sieve {
int n;
vector<int> sm;
notlinear_sieve(int max_n) : n(max_n), sm(max_n + 1) {
assert(1 <= n);
iota(sm.begin(), sm.end(), 0);
if (n >= 2) sm[2] = 2;
for (int j = 4; j <= n; j += 2) sm[j] = 2;
for (int i = 3; i * i <= n; i += 2) {
if (sm[i] != i) continue;
for (int j = i * 2; j <= n; j += i) {
if (sm[j] == j) sm[j] = i;
}
}
}
bool is_prime(int v) const noexcept {
assert(v <= n);
if (v <= 1) return false;
return sm[v] == v;
}
vector<int> primes(int max_n) const noexcept {
assert(1 <= max_n && max_n <= n);
vector<int> ret;
for (int i = 2; i <= max_n; i++)
if (is_prime(i)) ret.push_back(i);
return ret;
}
// sorted
vector<pair<int, int>> factorize(int v) const noexcept {
assert(1 <= v && v <= n);
vector<pair<int, int>> ret;
while (sm[v] != v) {
int tmp = v;
int c = 0;
while (tmp % sm[v] == 0) c++, tmp /= sm[v];
ret.emplace_back(sm[v], c);
v = tmp;
}
if (v != 1) ret.emplace_back(v, 1);
return ret;
}
int divcnt(int v) const noexcept {
assert(1 <= v && v <= n);
auto ps = factorize(v);
int ret = 1;
for (auto [p, c] : ps) ret *= (c + 1);
return ret;
}
// not sorted
vector<int> divs(int v) const noexcept {
assert(1 <= v && v <= n);
auto ps = factorize(v);
int sz = 1;
for (auto [p, c] : ps) sz *= (c + 1);
vector<int> ret(sz);
ret[0] = 1;
int r = 1;
for (auto [p, c] : ps) {
int nr = r;
for (int j = 0; j < c; j++) {
for (int k = 0; k < r; k++) {
ret[nr] = p * ret[nr - r];
nr++;
}
}
r = nr;
}
return ret;
}
// 偶数...+1 奇数...-1 p^2...0
template <typename T> vector<T> mobius(int N) const {
assert(N <= n);
vector<T> ret(N + 1, 1);
for (int p = 2; p <= N; p++)
if (is_prime(p)) {
for (int q = p; q <= N; q += p) {
if ((q / p) % p == 0)
ret[q] = 0;
else
ret[q] = -ret[q];
}
}
return ret;
}
// 以下4つは素因数ごとの累積和と思うと良い。計算量はO(nloglogn)
// zeta_transform... 結合則 + 交換則 ならなんでも乗る
// mobius_transform ... 結合 + 交換 + 逆元の存在 ならなんでも乗る
// f -> F 約数の添字をadd
template <typename T> vector<T> divisor_zeta_transform(vector<T> A) const {
int N = int(A.size()) - 1;
assert(N <= n);
for (int p = 2; p <= N; p++) {
if (is_prime(p)) {
for (int k = 1; k * p <= N; k++) {
A[k * p] += A[k];
}
}
}
return A;
}
// F -> f
template <typename T>
vector<T> divisor_mobius_transform(vector<T> A) const {
int N = int(A.size()) - 1;
assert(N <= n);
for (int p = 2; p <= N; p++) {
if (is_prime(p)) {
for (int k = N / p; k >= 1; k--) {
A[k * p] -= A[k];
}
}
}
return A;
}
// f -> F 倍数の添字をadd
template <typename T> vector<T> multiple_zeta_transform(vector<T> A) const {
int N = int(A.size()) - 1;
assert(N <= n);
for (int p = 2; p <= N; p++) {
if (is_prime(p)) {
for (int k = N / p; k >= 1; k--) {
A[k] += A[k * p];
}
}
}
return A;
}
// F -> f
template <typename T>
vector<T> multiple_mobius_transform(vector<T> A) const {
int N = int(A.size()) - 1;
assert(N <= n);
for (int p = 2; p <= N; p++) {
if (is_prime(p)) {
for (int k = 1; k <= N / p; k++) {
A[k] -= A[k * p];
}
}
}
return A;
}
};