This documentation is automatically generated by online-judge-tools/verification-helper
#include "Math/combination.hpp"
$O(n)$ 構築・自動拡張 combinationと付随する関数。
参考 : https://drken1215.hatenablog.com/entry/2018/06/08/210000
template<typename T, long long mod> cmb
… modと戻り値の型を指定
mod
は素数(assertで落ちる)(mod-1) * (mod-1)
が long long
に収まる(assertで落ちる)using combination998244353 = cmb<atcoder::modint998244353, 998244353>
がエイリアスとして登録されているT operator()(int n, int k)
… $\binom{n}{r}$
T C(int n, int k)
… $\binom{n}{r}$
T B(int n)
… $n!$
T invB(int n)
… $\frac{1}{n!}$
T H(int n, int k)
… $\binom{n+k-1}{k}$
T Cn(int u)
… $\frac{\binom{2n}{n}}{(n+1)}$
T raw(long long n, long long r)
… $\binom{n}{r}$
$a> 0, \quad b \in \mathbb{Z}$ とする.
とした。
template <typename T, long long mod> struct combination {
vector<long long> fac, ifac, inv;
long long N;
combination() {
fac.resize(2, 1);
ifac.resize(2, 1);
inv.resize(2, 1);
N = 1;
}
void reserve(long long n) { expand(n); }
T operator()(int n, int k) { return C(n, k); }
T raw(long long n, long long k) const {
if (k < 0) return 0;
if (k == 0) return 1;
if (n < k) return 0;
if (n - k < k) {
k = n - k;
}
long long p = 1, q = 1;
for (long long i = 0; i < k; i++) {
p *= (n - i) % mod;
p %= mod;
q *= (k - i) % mod;
q %= mod;
}
return p * modinv(q) % mod;
}
T C(int n, int k) {
if (k < 0) return 0;
if (k == 0) return 1;
if (n < k) return 0;
if (N < n) expand(n);
return fac[n] * ifac[n - k] % mod * ifac[k] % mod;
}
T P(int n, int k) {
if (k < 0) return 0;
if (k == 0) return 1;
if (n < k) return 0;
if (N < n) expand(n);
return fac[n] * ifac[n - k] % mod;
}
T B(int n) {
if (N < n) expand(n);
return (n < 0 ? 0 : fac[n]);
}
T invB(int n) {
if (N < n) expand(n);
return (n < 0 ? 0 : ifac[n]);
}
T H(int n, int k) { return C(n + k - 1, k); }
T Cn(int n) { return C(2 * n, n) * inv[n + 1] % mod; }
private:
constexpr static bool is_prime_constexpr(long long x) {
if (x <= 1) return false;
for (long long i = 2; i * i <= x; i++) {
if (x % i == 0) return false;
}
return true;
}
static_assert(is_prime_constexpr(mod), "mod must be prime");
static_assert(__int128_t(mod - 1) * (mod - 1) <= __int128_t(LLONG_MAX),
"(mod - 1) * (mod - 1) <= LLONG_MAX must be satisfied");
long long extgcd(long long a,
long long b,
long long &x,
long long &y) const {
if (b == 0) {
x = 1;
y = 0;
return a;
}
auto d = extgcd(b, a % b, y, x);
y -= a / b * x;
return d;
}
long long modinv(long long a) const {
long long x, y;
extgcd(a, mod, x, y);
x %= mod;
if (x < 0) x += mod;
return x;
}
void expand(long long new_max_n) {
if (new_max_n <= N) return;
long long nx = N;
// 2冪で大きくしていく。
while (nx < new_max_n) nx <<= 1;
new_max_n = nx;
long long pre = N;
N = new_max_n;
fac.resize(N + 1);
ifac.resize(N + 1);
inv.resize(N + 1);
for (long long i = pre + 1; i <= N; i++) {
fac[i] = fac[i - 1] * i % mod;
}
ifac[N] = modinv(fac[N]);
inv[N] = ifac[N] * fac[N - 1] % mod;
for (long long i = N - 1; i >= pre + 1; i--) {
ifac[i] = ifac[i + 1] * (i + 1) % mod;
inv[i] = ifac[i] * fac[i - 1] % mod;
}
return;
}
};
/*
@brief combination
@docs doc/cmb.md
*/
using combination998244353 = combination<atcoder::modint998244353, 998244353>;
#line 1 "Math/combination.hpp"
template <typename T, long long mod> struct combination {
vector<long long> fac, ifac, inv;
long long N;
combination() {
fac.resize(2, 1);
ifac.resize(2, 1);
inv.resize(2, 1);
N = 1;
}
void reserve(long long n) { expand(n); }
T operator()(int n, int k) { return C(n, k); }
T raw(long long n, long long k) const {
if (k < 0) return 0;
if (k == 0) return 1;
if (n < k) return 0;
if (n - k < k) {
k = n - k;
}
long long p = 1, q = 1;
for (long long i = 0; i < k; i++) {
p *= (n - i) % mod;
p %= mod;
q *= (k - i) % mod;
q %= mod;
}
return p * modinv(q) % mod;
}
T C(int n, int k) {
if (k < 0) return 0;
if (k == 0) return 1;
if (n < k) return 0;
if (N < n) expand(n);
return fac[n] * ifac[n - k] % mod * ifac[k] % mod;
}
T P(int n, int k) {
if (k < 0) return 0;
if (k == 0) return 1;
if (n < k) return 0;
if (N < n) expand(n);
return fac[n] * ifac[n - k] % mod;
}
T B(int n) {
if (N < n) expand(n);
return (n < 0 ? 0 : fac[n]);
}
T invB(int n) {
if (N < n) expand(n);
return (n < 0 ? 0 : ifac[n]);
}
T H(int n, int k) { return C(n + k - 1, k); }
T Cn(int n) { return C(2 * n, n) * inv[n + 1] % mod; }
private:
constexpr static bool is_prime_constexpr(long long x) {
if (x <= 1) return false;
for (long long i = 2; i * i <= x; i++) {
if (x % i == 0) return false;
}
return true;
}
static_assert(is_prime_constexpr(mod), "mod must be prime");
static_assert(__int128_t(mod - 1) * (mod - 1) <= __int128_t(LLONG_MAX),
"(mod - 1) * (mod - 1) <= LLONG_MAX must be satisfied");
long long extgcd(long long a,
long long b,
long long &x,
long long &y) const {
if (b == 0) {
x = 1;
y = 0;
return a;
}
auto d = extgcd(b, a % b, y, x);
y -= a / b * x;
return d;
}
long long modinv(long long a) const {
long long x, y;
extgcd(a, mod, x, y);
x %= mod;
if (x < 0) x += mod;
return x;
}
void expand(long long new_max_n) {
if (new_max_n <= N) return;
long long nx = N;
// 2冪で大きくしていく。
while (nx < new_max_n) nx <<= 1;
new_max_n = nx;
long long pre = N;
N = new_max_n;
fac.resize(N + 1);
ifac.resize(N + 1);
inv.resize(N + 1);
for (long long i = pre + 1; i <= N; i++) {
fac[i] = fac[i - 1] * i % mod;
}
ifac[N] = modinv(fac[N]);
inv[N] = ifac[N] * fac[N - 1] % mod;
for (long long i = N - 1; i >= pre + 1; i--) {
ifac[i] = ifac[i + 1] * (i + 1) % mod;
inv[i] = ifac[i] * fac[i - 1] % mod;
}
return;
}
};
/*
@brief combination
@docs doc/cmb.md
*/
using combination998244353 = combination<atcoder::modint998244353, 998244353>;