This documentation is automatically generated by online-judge-tools/verification-helper
#include "Graph/Chromatic_Number_with_restoration.hpp"
#include "../Convolution/bitwise_or_convolution.hpp"
using S = ll;
S op(S a, S b) {
return a + b;
}
S inv(S x) {
return -x;
}
S zero() {
return 0;
}
pair<int, vec<int>> chromatic_number(const vec<vec<int>> &g) {
if (g.empty()) return {0, {}};
int n = g.size();
vec<vec<ll>> dps(1, vec<ll>(1 << n, 0));
dps[0][0] = 1;
vec<ll> dp(1 << n, -1); // dp[i][S] := S は i 色彩色可能か?
dp[0] = 1;
rep(i, 0, n) dp[1 << i] = 1;
rep(s, 0, 1 << n) if (dp[s] == -1) {
int lat = -1;
rep(i, 0, n) if (s >> i & 1) lat = i;
int sub = s ^ (1 << lat);
if (dp[sub] == 0) {
dp[s] = 0;
continue;
}
bool ng = false;
for (int to : g[lat])
if (s >> to & 1) ng = true;
if (ng)
dp[s] = 0;
else
dp[s] = 1;
}
dps.push_back(dp);
while (dps.back()[(1 << n) - 1] == 0) {
dps.push_back(bitwise_or_convolution<S, op, inv, zero>(
dps[1], dps[dps.size() - 1]));
rep(i, 0, n) if (dps[dps.size() - 1][i] != 0) dps[dps.size() - 1][i] =
1;
}
int K = dps.size() - 1;
vec<int> res(n, -1);
auto dfs = [&](auto f, int S,
int l) -> void { // 集合 Sを、 [l, K)を使って彩色。
if (S == 0) return;
int sub = S;
do {
if (dps[1][sub] && dps[K - l - 1][S ^ sub]) {
rep(i, 0, n) if (sub >> i & 1) res[i] = l;
f(f, S ^ sub, l + 1);
break;
}
sub = (sub - 1) & S;
} while (sub != S);
};
dfs(dfs, (1 << n) - 1, 0);
return {K, res};
}
#line 1 "Algorithm/subset_transform.hpp"
template<class S, S (*op)(S, S)> vector<S> subset_zeta_transform (vector<S> f, int n) {
rep(i, 0, n) {
rep(s, 0, 1LL << n) {
if((s & (1 << i)) != 0) { // if i in s
f[s] = op(f[s], f[s ^ (1 << i)]);
}
}
}
return f;
}
template<class S, S (*op)(S, S), S (*inv)(S)> vector<S> subset_mobius_transform (vector<S> f, int n) {
rrep(i, 0, n) {
rep(s, 0, 1LL << n) {
if((s & (1 << i)) != 0) { // if i in s
f[s] = op(f[s], inv(f[s ^ (1 << i)]));
}
}
}
return f;
}
#line 2 "Convolution/bitwise_or_convolution.hpp"
// i or j = k <-> i or j が k の subset (⇔ i, jがともにkのsubset)
template<class S, S (*op)(S, S), S (*inv)(S), S(*zero)()> vec<S> bitwise_or_convolution(vec<S> A, vec<S> B) {
ll lg = 1;
while(A.size() > (1LL << lg)) lg++;
while(B.size() > (1LL << lg)) lg++;
A.resize(1LL << lg, zero());
B.resize(1LL << lg, zero());
vec<S> FA = subset_zeta_transform<S, op>(A, lg);
vec<S> FB = subset_zeta_transform<S, op>(B, lg);
rep(i, 0, 1 << lg) FA[i] *= FB[i];
vec<S> f = subset_mobius_transform<S, op, inv>(FA, lg);
return f;
}
//以降の項について、0である。
#line 2 "Graph/Chromatic_Number_with_restoration.hpp"
using S = ll;
S op(S a, S b) {
return a + b;
}
S inv(S x) {
return -x;
}
S zero() {
return 0;
}
pair<int, vec<int>> chromatic_number(const vec<vec<int>> &g) {
if (g.empty()) return {0, {}};
int n = g.size();
vec<vec<ll>> dps(1, vec<ll>(1 << n, 0));
dps[0][0] = 1;
vec<ll> dp(1 << n, -1); // dp[i][S] := S は i 色彩色可能か?
dp[0] = 1;
rep(i, 0, n) dp[1 << i] = 1;
rep(s, 0, 1 << n) if (dp[s] == -1) {
int lat = -1;
rep(i, 0, n) if (s >> i & 1) lat = i;
int sub = s ^ (1 << lat);
if (dp[sub] == 0) {
dp[s] = 0;
continue;
}
bool ng = false;
for (int to : g[lat])
if (s >> to & 1) ng = true;
if (ng)
dp[s] = 0;
else
dp[s] = 1;
}
dps.push_back(dp);
while (dps.back()[(1 << n) - 1] == 0) {
dps.push_back(bitwise_or_convolution<S, op, inv, zero>(
dps[1], dps[dps.size() - 1]));
rep(i, 0, n) if (dps[dps.size() - 1][i] != 0) dps[dps.size() - 1][i] =
1;
}
int K = dps.size() - 1;
vec<int> res(n, -1);
auto dfs = [&](auto f, int S,
int l) -> void { // 集合 Sを、 [l, K)を使って彩色。
if (S == 0) return;
int sub = S;
do {
if (dps[1][sub] && dps[K - l - 1][S ^ sub]) {
rep(i, 0, n) if (sub >> i & 1) res[i] = l;
f(f, S ^ sub, l + 1);
break;
}
sub = (sub - 1) & S;
} while (sub != S);
};
dfs(dfs, (1 << n) - 1, 0);
return {K, res};
}